Effect of Preparation Method and Ni2+ Substitution on the Structural, Thermal, and Optical Properties of Nanocrystalline Lanthanum Zirconate Pyrochlore

Author:

Alharthi Fahad,Wahab Rizwan,Manoharadas SalimORCID,Alrayes Basel F.,Ahmad Naushad

Abstract

In order to establish the effective application of materials in a particular area, it is important to first investigate the physical and chemical properties, such as the crystallinity, structure, and the optical and surface properties. The objective of the present study is to fabricate thermally stable pyrochlore oxides, namely, lanthanum zirconate (La2Zr2O7, LZ) and Ni-doped lanthanum zirconate (La2Zr1.5Ni0.5O7, LZN) by the solid-state and sol-gel methods. The effects of the preparation and substitution of Zr4+ by Ni2+ for the resulting nanocrystalline samples were characterized in terms of structure, purity, porosity, the thermal and optical properties, and photoluminescence by different techniques: XRD, FT-IR, BET, EDS, TG-DTG, UV-Vis-DRS, and PL. The XRD results confirm that the pyrochlores prepared via the sol-gel method (LZ-sg and LZN-sg) had a cubic unit-cell lattice, whereas the solid-state method (LZ-s and LZN-s) had impurities of the oxides. The XRD patterns, LZ-sg and LZN-sg, were further treated with the Rietveld technique. The textural measurements reveal that LZ-sg had a higher BET surface area compared to LZN-sg. In addition, the substitution of Zr4+ by the Ni2+ ion provides rational evidence for the improvement in the oxygen mobility, as well as the optical and photoluminescence properties through the lowering of the optical band energy and the electron–hole pairs.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3