Effect of Nano-Si3N4 on the Mechanical Properties of Cement-Based Materials

Author:

Zhu Jianping,Zhu LifeiORCID,Feng Chunhua,Guan Xuemao,Sun Yujiang,Zhang Wenyan

Abstract

In this paper, in order to improve the wear resistance of road cement, nano-Si3N4 (NSN) was incorporated into cement, and the effect of NSN on compressive strength and wear resistance of road cement was investigated. The main variable of the experimental investigation was the dosage of NSN. The experimental results showed that the addition of NSN could significantly improve the compressive strength and wear resistance of cement paste. Compared with the reference group, the wear resistance can be improved by 46.5% and the compressive strength of cement paste can be improved by 12.3% when the addition of NSN is 0.16% by weight. In addition, the improvement mechanisms of NSN on cement paste were revealed by hydration heat, XRD, DTA-TG, nanoindentation, nitrogen adsorption, and SEM for microscopic phase tests. Through the microscopic analysis, the addition of NSN can accelerate the hydration reaction and promote the hydration degree, optimize the pore structure, and make the cement paste more compact. Additionally, NSN can improve the performance of the interface transition zone (ITZ) and increase the content of HD C-S-H gel. The action mechanism of NSN is mainly dominated by the surface effect, filling effect, and larger surface energy of NSN thereby improving the mechanical properties of cement-based materials. These research results have guiding significance for the design of the high wear resistance and high compressive strength of cement-based materials.

Funder

National Natural Science Foundation of China

College Students' Innovative Entrepreneurial Training Plan Program

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3