A Scalable Prototype by In Situ Polymerization of Biodegradables, Cross-Linked Molecular Mode of Vapor Transport, and Metal Ion Rejection for Solar-Driven Seawater Desalination

Author:

Wei Zhou,Arshad Naila,Irshad Muhammad SultanORCID,Idrees Muhammad,Ahmed Iftikhar,Li Hongrong,Qazi Hummad Habib,Yousaf Muhammad,Alshahrani Lina Abdullah,Lu Yuzheng

Abstract

Water scarcity in mass populated areas has become a major global threat to the survival and sustainability of community life on earth, which needs the prompt attention of technological leadership. Solar evaporation has emerged as a renewable energy resource and a novel technique for clean water production and wastewater treatment. Indeed, mounting a scalable solar evaporator including high evaporation efficiency and thermal management remains a significant challenge. Herein, we demonstrate a self-floatable, ecofriendly polypyrrole/wood sponge-based (PPy@WS) steam generator. The low-cost and easy to fabricate evaporator system consists of a single-step in situ polymerization of a 2-D (two-dimensional) hydrophilic wood sponge abundantly available for commercialization. The as-prepared PPy@WS solar evaporator exhibits excellent wettability and is super hydrophilic (contact angle ∼ 0), salt-resistant, and has an excellent light absorption of ∼94% due to omnidirectional diffusion reflection in PPy Nanoparticles (NPs). The capacity of the PPy@WS evaporator to absorb broadband solar radiation and convert it into thermal energy has enabled it to achieve excellent surface temperature (38.6 °C). The accumulated heat can generate vapors at the rate of 1.62 kg·m−2·h−1 along with 93% photothermal conversion efficiency under one sun (1 kW·m−2). Moreover, the presented prototype possesses the capability to be installed directly without the use of any complex protocol to purify seawater or sewage with an efficient rejection ratio of primary metal ions present in seawater (approximately 100%). This simple fabrication process with renewable polymer resources and photothermal materials can serve as a practical model towards high-performance solar evaporation technology for water-stressed communities in remote areas.

Funder

Hubei University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3