Investigation on Ultrasonic Cavitation Erosion of Aluminum–Titanium Alloys in Sodium Chloride Solution

Author:

Zhao Jingtao,Ning Liping,Zhu Jingwen,Li YinglongORCID

Abstract

Two kinds of Ti-alloys, i.e., Al–5Ti and Al–10Ti alloys, were manufactured in this study, and their ultrasonic cavitation erosion behaviors in 3.5 wt.% NaCl solution were evaluated by the cumulative mass loss, scanning electronic micrograph, and three-dimensional morphology. The results show that mass loss and surface damage of the Al, Al–5Ti, and Al–10Ti alloys obviously increased with the increasing cavitation erosion time. Compared with the pure Al, the cavitation resistance of the Al–5Ti and Al–10Ti alloys was improved because of the presence of the TiAl3 phase. In addition, the synergistic effect between cavitation and corrosion of the Al–Ti alloy in 3.5 wt.% NaCl solution was studied according to the polarization curve of the moving electrode. The mass loss caused by the synergistic effect between cavitation erosion and corrosion accounted for a large percentage, 23.59%, indicating that corrosion has a critical impact on the cavitation erosion of the Al–Ti alloys. Compared with corrosion promoted by cavitation erosion, the cavitation erosion promoted by corrosion had a larger promoting effect.

Funder

This research was funded by the National Nature Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3