Beading Mechanism and Performance of Porous Steel Slag Microbead Abrasive

Author:

Pei Jingjing,Zhang Yuzhu,Xing Hongwei,Ren Qianqian,Huo Wenqing,Wu Jinhu

Abstract

The use of the gas-quenching process for preparing porous bead slag abrasive was investigated in this paper. An X-ray diffractometer, field emission scanning electron microscope, mercury intrusion porosimetry, and stereo microscope were used to analyze the microbead forming mechanism, pore structure, acid–alkali resistance, and polishing properties of porous steel slag microbead abrasives. Results show that the porous steel slag abrasives present a mono-disperse spherical shape with a hard shell and the porosity is 42.36%. The thermodynamic fractal model indicates that the fractal dimension of the abrasive is 2.226, which shows its simple pore structure. The sample has better chemical stability in the polishing fluid than in water, acid, and alkali solution. Therefore, aluminum and copper alloys are used as substrates for polishing tests. The results indicate that the abrasives could effectively improve the quality of the workpiece surface and the polishing efficiency for aluminum alloy was higher than that for copper alloy.

Funder

Tangshan Municipal Project of Science and Technology

Natural science Foundation of Hebei Province

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Reference28 articles.

1. Research progress and prospect of steel slag modification;Wang;Environ. Eng.,2020

2. The Research Progress of Steel Slag Utilization and Stabilization Technology;Liu;Conserv. Util. Miner. Resour.,2018

3. Understanding dissolution characteristics of steel slag for resource recovery

4. Study on Physical Excitation Mechanism of Steel Slag Tailings by XRD and SEM;Zhang;Spectr. Anal.,2019

5. Research Progress of On-line Reconstruction Technology of Liquid Steel Slag;Xu;Multipurp. Util. Miner. Resour.,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Metallurgical Slag;Crystals;2022-03-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3