A Synergy Approach to Enhance Upconversion Luminescence Emission of Rare Earth Nanophosphors with Million-Fold Enhancement Factor

Author:

Vu Duc TuORCID,Tsai Yi-Chang,Le Quoc Minh,Kuo Shiao-WeiORCID,Lai Ngoc Diep,Benisty Henri,Lin Jiunn-Yuan,Kan Hung-Chih,Hsu Chia-Chen

Abstract

Lanthanide (Ln3+)–doped upconversion nanoparticles (UCNPs) offer an ennormous future for a broad range of biological applications over the conventional downconversion fluorescent probes such as organic dyes or quantum dots. Unfortunately, the efficiency of the anti−Stokes upconversion luminescence (UCL) process is typically much weaker than that of the Stokes downconversion emission. Albeit recent development in the synthesis of UCNPs, it is still a major challenge to produce a high−efficiency UCL, meeting the urgent need for practical applications of enhanced markers in biology. The poor quantum yield efficiency of UCL of UCNPs is mainly due to the fol-lowing reasons: (i) the low absorption coefficient of Ln3+ dopants, the specific Ln3+ used here being ytterbium (Yb3+), (ii) UCL quenching by high−energy oscillators due to surface defects, impurities, ligands, and solvent molecules, and (iii) the insufficient local excitation intensity in broad-field il-lumination to generate a highly efficient UCL. In order to tackle the problem of low absorption cross-section of Ln3+ ions, we first incorporate a new type of neodymium (Nd3+) sensitizer into UCNPs to promote their absorption cross-section at 793 nm. To minimize the UCL quenching induced by surface defects and surface ligands, the Nd3+-sensitized UCNPs are then coated with an inactive shell of NaYF4. Finally, the excitation light intensity in the vicinity of UCNPs can be greatly enhanced using a waveguide grating structure thanks to the guided mode resonance. Through the synergy of these three approaches, we show that the UCL intensity of UCNPs can be boosted by a million−fold compared with conventional Yb3+–doped UCNPs.

Funder

Ministry of Science and Technology, Taiwan

Agence Nationale de la Recherche, France

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3