Thermodynamic Study of Adsorption Capacity between Metal Film and Optical Crystal: Adsorption Energy of Ni Films on LiNbO3 Substrates

Author:

Xu Yuhang,Lu Fei,Liu Kaijing,Ma Changdong

Abstract

The growth of large areas of two-dimensional homogeneous graphene depends on the bond between the metal film, which acts as a catalyst, and the substrate material. The structural differences between the metal and the various anisotropic crystals make this growth method a challenge for the feasibility of growing graphene on optical crystals. In this paper, the evolution of the adsorption energy between nickel (Ni) films and Lithium Niobate (LiNbO3, LN) crystals is modelled under different thermal treatment environments by constructing a physical model of the temperature dependence of the adsorption energy between the two materials. With the aid of a series of simulated full annealing processes, the changes in adsorption energy at different temperatures were calculated. The results show that there are two “temperature windows” with target annealing temperatures of 700–800 K and 950–1050 K that prove to have high adsorption energies. This is of great guiding and practical significance for the direct transfer-free synthesis of graphene on LiNbO3 substrates.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3