Some Issues on Crystal Plasticity Models Formulation: Motion Decomposition and Constitutive Law Variants

Author:

Trusov PeterORCID,Shveykin AlexeyORCID,Kondratev Nikita

Abstract

In this paper, kinematic relations and constitutive laws in crystal plasticity are analyzed in the context of geometric nonlinearity description and fulfillment of thermodynamic requirements in the case of elastic deformation. We consider the most popular relations: in finite form, written in terms of the unloaded configuration, and in rate form, written in terms of the current configuration. The presence of a corotational derivative in the relations formulated in terms of the current configuration testifies to the fact that the model is based on the decomposition of motion into the deformation motion and the rigid motion of a moving coordinate system, and precisely the stress rate with respect to this coordinate system is associated with the strain rate. We also examine the relations of the mesolevel model with an explicit separation of a moving coordinate system and the elastic distortion of crystallites relative to it in the deformation gradient. These relations are compared with the above formulations, which makes it possible to determine how close they are. The results of the performed analytical calculations show the equivalence or similarity (in the sense of the response determined under the same influences) of the formulation and are supported by the results of numerical calculation. It is shown that the formulation based on the decomposition of motion with an explicit separation of the moving coordinate system motion provides a theoretical framework for the transition to a similar formulation in rate form written in terms of the current configuration. The formulation of this kind is preferable for the numerical solution of boundary value problems (in a case when the current configuration and, consequently, contact boundaries, are not known a priori) used to model the technological treatment processes.

Funder

The Ministry of Education and Science of the Russian Federation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3