Abstract
This paper focuses on the preparation of cerium-doped yttrium aluminum garnet (YAG: Ce) powder with several concentration gradients via the sol-gel method by detecting its structural characteristics via X-ray diffraction (XRD) patterns and scanning electron microscope (SEM) to verify the generation of a complete crystal phase and evenly distributed nanopowder. On this basis, the luminescence characteristics of Ce3+ are explored, the mechanism and model are discussed based on the spectra, and the ideal doping concentration was obtained by comparing the luminescence intensity along with the fluorescence quenching theory and fluorescence decay spectra of samples with different doping concentrations. Several radiation dosimeters based on YAG: Ce phosphors were made; the online radiation monitoring function was realized under the exposure of a standard X-ray source; the repeatability, accuracy, and sensitivity of the system were verified by experiments; and the factors affecting dosimeter response are discussed. This paper verifies the possibility of adhibiting YAG: Ce fluorescent powder for online X-ray monitoring, and lays the foundation for further research.
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献