Development of Artificial Intelligence/Machine Learning (AI/ML) Models for Methane Emissions Forecasting in Seaweed

Author:

Louime Clifford Jaylen1ORCID,Raza Tariq Asleem2

Affiliation:

1. College of Natural Sciences, University of Puerto Rico, San Juan, PR 00931, USA

2. Center for Data Sciences—Computer Sciences, IITD, Indian Institute of Technology Delhi, Delhi 110016, India

Abstract

This research project aimed to address the growing concern about methane emissions from seaweed by developing a Convolutional Neural Network (CNN) model capable of accurately predicting these emissions. The study used PANDAS to read and analyze the dataset, incorporating statistical measures like mean, median, and standard deviation to understand the dataset. The CNN model was trained using the ReLU activation function and mean absolute error as the loss function. The model performance was evaluated through MAPE graphs, comparing the mean absolute percentage error (MAPE) between training and validation sets and between true and predicted emissions, and analyzing trends in yearly greenhouse gas emissions. The results demonstrated that the CNN model achieved a high level of accuracy in predicting methane emissions, with a low MAPE between the expected and actual values. This approach should enhance our understanding of methane emissions from Sargassum, contributing to more accurate environmental impact assessments and effective mitigation strategies.

Funder

Department of Energy Minority Serving Institution Partnership Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3