The Trade-Off between Enteric and Manure Methane Emissions and Their Bacterial Ecology in Lactating Cows Fed Diets Varying in Forage-to-Concentrate Ratio and Rapeseed Oil

Author:

Darabighane Babak1,Tapio Ilma2ORCID,Rasi Saija3,Seppänen Ari-Matti3,Blasco Lucia3ORCID,Ahvenjärvi Seppo1,Bayat Ali R.1ORCID

Affiliation:

1. Animal Nutrition, Production Systems, Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland

2. Genomics and Breeding, Production Systems, Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland

3. Biorefinery and Bio-Based Fertilizers, Production Systems, Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland

Abstract

An experiment was conducted to examine how dietary interventions reducing enteric methane (CH4) emissions influence manure CH4 emissions in biogas production (as biochemical methane potential (BMP)) or under static conditions mimicking natural manure storage conditions. Experimental treatments consisted of a factorial arrangement of high (HF: 0.65) or low (LF: 0.35) levels of forage and 0 or 50 g of rapeseed oil per kg of diet dry matter. Oil supplementation reduced daily enteric CH4 emissions, especially in the HF diet, by 20%. Greater dietary concentrate proportion reduced CH4 yield and intensity (6 and 12%, respectively) and decreased pH, increased total volatile fatty acids, and molar proportions of butyrate and valerate in feces incubated under static conditions. Oil supplementation increased daily BMP and BMP calculated per unit of organic matter (OM) (17 and 15%, respectively). Increased dietary concentrate had no impact on daily BMP and BMP per unit of OM, whereas it reduced daily CH4 production by 89% and CH4 per unit of OM by 91% under static conditions. Dietary oil supplementation tended to decrease fecal CH4 production per unit of digestible OM (23%) under static conditions. Diets had no impact on the alpha diversity of ruminal prokaryotes. After incubation, the fecal prokaryote community was significantly less diverse. Diets had no effect on alpha diversity in the BMP experiment, but static trial fecal samples originating from the HF diet showed significantly lower diversity compared with the LF diet. Overall, the tested dietary interventions reduced enteric CH4 emissions and reduced or tended to reduce manure CH4 emissions under static conditions, indicating a lack of trade-off between enteric and manure CH4 emissions. The potential for increasing CH4 yields in biogas industries due to dietary interventions could lead to a sustainable synergy between farms and industry.

Funder

Ministry of Agriculture and Forestry of Finland

EU Horizon 2020 Research and Innovation Program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3