Classifying Cardiac Arrhythmia from ECG Signal Using 1D CNN Deep Learning Model

Author:

Ahmed Adel A.1ORCID,Ali Waleed1ORCID,Abdullah Talal A. A.2ORCID,Malebary Sharaf J.1ORCID

Affiliation:

1. Information Technology Department, Faculty of Computing and Information Technology-Rabigh, King Abdulaziz University, Jeddah 25729, Saudi Arabia

2. Computer & Information Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia

Abstract

Blood circulation depends critically on electrical activation, where any disturbance in the orderly pattern of the heart’s propagating wave of excitation can lead to arrhythmias. Diagnosis of arrhythmias using electrocardiograms (ECG) is widely used because they are a fast, inexpensive, and non-invasive tool. However, the randomness of arrhythmic events and the susceptibility of ECGs to noise leads to misdiagnosis of arrhythmias. In addition, manually diagnosing cardiac arrhythmias using ECG data is time-intensive and error-prone. With better training, deep learning (DL) could be a better alternative for fast and automatic classification. The present study introduces a novel deep learning architecture, specifically a one-dimensional convolutional neural network (1D-CNN), for the classification of cardiac arrhythmias. The model was trained and validated with real and noise-attenuated ECG signals from the MIT-BIH dataset. The main aim is to address the limitations of traditional electrocardiograms (ECG) in the diagnosis of arrhythmias, which can be affected by noise and randomness of events, leading to misdiagnosis and errors. To evaluate the model performance, the confusion matrix is used to calculate the model accuracy, precision, recall, f1 score, average and AUC-ROC. The experiment results demonstrate that the proposed model achieved outstanding performance, with 1.00 and 0.99 accuracies in the training and testing datasets, respectively, and can be a fast and automatic alternative for the diagnosis of arrhythmias.

Funder

King Abdulaziz University - Institutional Funding Program for Research and Development - Ministry of Education

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3