Intuitionistic Fuzzy Deep Neural Network

Author:

Atanassov Krassimir12ORCID,Sotirov Sotir2ORCID,Pencheva Tania1ORCID

Affiliation:

1. Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 105, 1113 Sofia, Bulgaria

2. Intelligent Systems Laboratory, Prof. Dr. Assen Zlatarov University, 1 “Prof. Yakimov” Blvd., 8010 Burgas, Bulgaria

Abstract

The concept of an intuitionistic fuzzy deep neural network (IFDNN) is introduced here as a demonstration of a combined use of artificial neural networks and intuitionistic fuzzy sets, aiming to benefit from the advantages of both methods. The investigation presents in a methodological way the whole process of IFDNN development, starting with the simplest form—an intuitionistic fuzzy neural network (IFNN) with one layer with single-input neuron, passing through IFNN with one layer with one multi-input neuron, further subsequent complication—an IFNN with one layer with many multi-input neurons, and finally—the true IFDNN with many layers with many multi-input neurons. The formulas for strongly optimistic, optimistic, average, pessimistic and strongly pessimistic formulas for NN parameters estimation, represented in the form of intuitionistic fuzzy pairs, are given here for the first time for each one of the presented IFNNs. To demonstrate its workability, an example of an IFDNN application to biomedical data is here presented.

Funder

“Theoretical research and applications of InterCriteria Analysis” of the Bulgarian National Science Fund

Centre of Competence MIRACle – Mechatronics, Innovation, Robotics, Automation, Clean technologies

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference42 articles.

1. State-of-the-art in artificial neural network applications: A survey;Abiodun;Heliyon,2018

2. Sleeman, W.C., Syed, K., Hagan, M., Palta, J., Kapoor, R., and Ghosh, P. (2021, January 1–4). Deep neural network models to automate incident triage in the radiation oncology incident learning system. Proceedings of the 12th ACM Conference on Bioinformatics, Computational Biology, and Health Informatics, Gainesville, FL, USA.

3. Gawlikowski, J., Tassi, C.R.N., Ali, M., Lee, J., Humt, M., Feng, J., Kruspe, A., Triebel, R., Jung, P., and Roscher, R. (2021). A survey of uncertainty in deep neural networks. arXiv.

4. Graupe, D. (2013). Principles of Artificial Neural Networks, World Scientific.

5. Artificial neural networks-based machine learning for wireless networks: A tutorial;Chen;IEEE Commun. Surv. Tutor.,2019

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3