Mathematical–Statistical Nonlinear Model of Zincing Process and Strategy for Determining the Optimal Process Conditions

Author:

Vagaská Alena1ORCID

Affiliation:

1. Department of Natural Sciences and Humanities, Faculty of Manufacturing Technologies with the Seat in Prešov, The Technical University of Košice, 080 01 Prešov, Slovakia

Abstract

The article is aimed at the mathematical and optimization modeling of technological processes of surface treatments, specifically the zincing process. In surface engineering, it is necessary to eliminate the risk that the resulting product quality will not be in line with the reliability requirements or needs of customers. To date, a number of research studies deal with the applications of mathematical modeling and optimization methods to control technological processes and eliminate uncertainties in the technological response variables. The situation is somewhat different with the acid zinc plating process, and we perceive their lack more. This article reacts to the specific requirements from practice for the prescribed thickness and quality of the zinc layer deposited in the acid electrolyte, which stimulated our interest in creating a statistical nonlinear model predicting the thickness of the resulting zinc coating (ZC). The determination of optimal process conditions for acid galvanizing is a complex problem; therefore, we propose an effective solving strategy based on the (i) experiment performed by using the design of experiments (DOE) approach; (ii) exploratory and confirmatory statistical analysis of experimentally obtained data; (iii) nonlinear regression model development; (iv) implementation of nonlinear programming (NLP) methods by the usage of MATLAB toolboxes. The main goal is achieved—regression model for eight input variables, including their interactions, is developed (the coefficient of determination reaches the value of R2 = 0.959403); the optimal values of the factors acting during the zincing process to achieve the maximum thickness of the resulting protective zinc layer (the achieved optimum value th* = 12.7036 μm), are determined.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3