Investigation of the Stress-Strain State of a Rectangular Plate after a Temperature Shock

Author:

Sedelnikov A. V.1ORCID,Orlov D. I.1ORCID,Serdakova V. V.1,Nikolaeva A. S.1

Affiliation:

1. Institute of Aerospace Engineering of Samara National Research University, 34 Moskovskoye Shosse, 443086 Samara, Russia

Abstract

In this paper, the temperature shock phenomenon is considered. This phenomenon occurs during the operation of engineering structures on Earth and in outer space. A rectangular plate has been selected as a structural element exposed to temperature shock. It has a rigidly sealed edge and three free edges. A one-dimensional third initial boundary value problem of thermal conductivity was posed and solved to study the stress–strain state of the plate. Fourier’s law was used to solve this problem, taking into account the inertial term, since the temperature shock is a fairly fast-dynamic phenomenon. It was believed that all the thermophysical properties of the plate are constant and do not depend on its temperature. As a result, the temperature field of the plate was obtained after the temperature shock. This temperature field generates temperature stresses inside the plate, which lead to temperature deformations. To determine these deformations, the initial boundary value problem of thermoelasticity was posed and solved in this work. The Sophie Germain equation was used while solving this problem. To describe the plate, the theory of flexible plates was used, taking into account the stresses in the middle surface of the plate. Next, the accuracy of analytical solutions for the points displacement of a homogeneous plate subjected to a temperature shock was investigated. The temperature field was constructed using a numerical simulation. Functions of the displacement vector components were obtained using approximate analytical solutions. The accuracy of approximate analytical solutions for the components of the plate points deformation vector was estimated. The obtained results allow us to describe the stress–strain state of the plate after the temperature shock. The results of this work can be used in the design of engineering structures for both terrestrial and space purposes in terms of stability calculations and the implementation of deformation constraints.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3