A Two-State Dynamic Decomposition-Based Evolutionary Algorithm for Handling Many-Objective Optimization Problems

Author:

Xing Lining,Li Jun,Cai Zhaoquan,Hou Feng

Abstract

Decomposition-based many-objective evolutionary algorithms (D-MaOEAs) are brilliant at keeping population diversity for predefined reference vectors or points. However, studies indicate that the performance of an D-MaOEA strongly depends on the similarity between the shape of the reference vectors (points) and that of the PF (a set of Pareto-optimal solutions symbolizing balance among objectives of many-objective optimization problems) of the many-objective problem (MaOP). Generally, MaOPs with expected PFs are not realistic. Consequently, the inevitable weak similarity results in many inactive subspaces, creating huge difficulties for maintaining diversity. To address these issues, we propose a two-state method to judge the decomposition status according to the number of inactive reference vectors. Then, two novel reference vector adjustment strategies, set as parts of the environmental selection approach, are tailored for the two states to delete inactive reference vectors and add new active reference vectors, respectively, in order to ensure that the reference vectors are as close as possible to the PF of the optimization problem. Based on the above strategies and an efficient convergence performance indicator, an active reference vector-based two-state dynamic decomposition-base MaOEA, referred to as ART-DMaOEA, is developed in this paper. Extensive experiments were conducted on ART-DMaOEA and five state-of-the-art MaOEAs on MaF1-MaF9 and WFG1-WFG9, and the comparative results show that ART-DMaOEA has the most competitive overall performance.

Funder

Science and Technology Innovation Team of Shaanxi Province

Special Project in Major Fields of Guangdong Universities

Major Projects of Guangdong Education Department for Foundation Research and Applied Research

Guangdong Provincial University Innovation Team Project

Hunan Key Laboratory of Intelligent Decision-making Technology for Emergency Management

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3