Investigation of the Effect of the Voltage Drop and Cable Length on the Success of Starting the Line-Start Permanent Magnet Motor in the Drive of a Centrifugal Pump Unit

Author:

Paramonov Aleksey1,Oshurbekov Safarbek1,Kazakbaev Vadim1ORCID,Prakht Vladimir1ORCID,Dmitrievskii Vladimir1ORCID

Affiliation:

1. Department of Electrical Engineering, Ural Federal University, 620002 Yekaterinburg, Russia

Abstract

The use of Line-Start Permanent Magnet Synchronous Motors (LSPMSM) improves the efficiency of conventional direct-on-line electric motor-driven fluid machinery such as pumps and fans. Such motors have increased efficiency compared to induction motors and do not have an excitation winding compared to classical synchronous motors with an excitation winding. However, LSPMSMs have difficulty in starting mechanisms with a high moment of inertia. This problem can be exacerbated by a reduced supply network voltage and a voltage drop on the cable. This article investigates the transients during the startup of an industrial centrifugal pump with a line-start permanent magnet synchronous motor. The simulation results showed that when the voltage on the motor terminals is reduced by 10%, the synchronization is delayed. The use of the cable also leads to a reduction in the voltage at the motor terminals in a steady state, but the time synchronization delay is more significant than that with a corresponding reduction in the supply voltage. The considered simulation example shows that the line-start permanent magnet synchronous motor has no problems with starting the pumping unit, even with a reduced supply voltage. The conclusions of this paper support a wider use of energy-efficient electric motors and can be used when selecting an electric motor to drive a centrifugal pump.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3