Embedding Uncertain Temporal Knowledge Graphs

Author:

Li Tongxin1ORCID,Wang Weiping1,Li Xiaobo1ORCID,Wang Tao1ORCID,Zhou Xin1ORCID,Huang Meigen1

Affiliation:

1. School of Systems Engineering, National University of Defense Technology, Changsha 410000, China

Abstract

Knowledge graph (KG) embedding for predicting missing relation facts in incomplete knowledge graphs (KGs) has been widely explored. In addition to the benchmark triple structural information such as head entities, tail entities, and the relations between them, there is a large amount of uncertain and temporal information, which is difficult to be exploited in KG embeddings, and there are some embedding models specifically for uncertain KGs and temporal KGs. However, these models either only utilize uncertain information or only temporal information, without integrating both kinds of information into the underlying model that utilizes triple structural information. In this paper, we propose an embedding model for uncertain temporal KGs called the confidence score, time, and ranking information embedded jointly model (CTRIEJ), which aims to preserve the uncertainty, temporal and structural information of relation facts in the embedding space. To further enhance the precision of the CTRIEJ model, we also introduce a self-adversarial negative sampling technique to generate negative samples. We use the embedding vectors obtained from our model to complete the missing relation facts and predict their corresponding confidence scores. Experiments are conducted on an uncertain temporal KG extracted from Wikidata via three tasks, i.e., confidence prediction, link prediction, and relation fact classification. The CTRIEJ model shows effectiveness in capturing uncertain and temporal knowledge by achieving promising results, and it consistently outperforms baselines on the three downstream experimental tasks.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3