Accurate Approximation of the Matrix Hyperbolic Cosine Using Bernoulli Polynomials

Author:

Alonso José M.ORCID,Ibáñez JavierORCID,Defez EmilioORCID,Alvarruiz FernandoORCID

Abstract

This paper presents three different alternatives to evaluate the matrix hyperbolic cosine using Bernoulli matrix polynomials, comparing them from the point of view of accuracy and computational complexity. The first two alternatives are derived from two different Bernoulli series expansions of the matrix hyperbolic cosine, while the third one is based on the approximation of the matrix exponential by means of Bernoulli matrix polynomials. We carry out an analysis of the absolute and relative forward errors incurred in the approximations, deriving corresponding suitable values for the matrix polynomial degree and the scaling factor to be used. Finally, we use a comprehensive matrix testbed to perform a thorough comparison of the alternative approximations, also taking into account other current state-of-the-art approaches. The most accurate and efficient options are identified as results.

Funder

Vicerrectorado de Investigación de la Universitat Politècnica de València

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference43 articles.

1. Multiscale S-fraction reduced-order models for massive wavefield simulations;Druskin;Multiscale Model. Simul.,2017

2. Matrix Functions;Frommer;Model Order Reduction: Theory, Research Aspects and Applications. Mathematics in Industry. The European Consortium for Mathematics in Industry,2008

3. An algorithm for improving non-local means operators via low-rank approximation;May;IEEE Trans. Image Process.,2016

4. Cayleynets: Graph convolutional neural networks with complex rational spectral filters;Levie;IEEE Trans. Signal Process.,2018

5. Higham, N.J. (2008). Functions of Matrices: Theory and Computation, Society for Industrial and Applied Mathematics.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3