Label-Free Detection of E. coli O157:H7 DNA Using Light-Addressable Potentiometric Sensors with Highly Oriented ZnO Nanorod Arrays

Author:

Tian Yulan,Liang Tao,Zhu Ping,Chen Yating,Chen Wei,Du Liping,Wu ChunshengORCID,Wang Ping

Abstract

The detection of bacterial deoxyribonucleic acid (DNA) is of great significance in the quality control of food and water. In this study, a light-addressable potentiometric sensor (LAPS) deposited with highly oriented ZnO nanorod arrays (NRAs) was used for the label-free detection of single-stranded bacterial DNA (ssDNA). A functional, sensitive surface for the detection of Escherichia coli (E. coli) O157:H7 DNA was prepared by the covalent immobilization of the specific probe single-stranded DNA (ssDNA) on the LAPS surface. The functional surface was exposed to solutions containing the target E. coli ssDNA molecules, which allowed for the hybridization of the target ssDNA with the probe ssDNA. The surface charge changes induced by the hybridization of the probe ssDNA with the target E. coli ssDNA were monitored using LAPS measurements in a label-free manner. The results indicate that distinct signal changes can be registered and recorded to detect the target E. coli ssDNA. The lower detection limit of the target ssDNA corresponded to 1.0 × 102 colony forming units (CFUs)/mL of E. coli O157:H7 cells. All the results demonstrate that this DNA biosensor, based on the electrostatic detection of ssDNA, provides a novel approach for the sensitive and effective detection of bacterial DNA, which has promising prospects and potential applications in the quality control of food and water.

Funder

National Natural Science Foundation of China

Doctoral Fund of Education Ministry of China

Fundamental Research Funds for the Central Universities, China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3