Manufacturing and Characterization of Dental Crowns Made of 5-mol% Yttria Stabilized Zirconia by Digital Light Processing

Author:

Jung Jae-Min12,Kim Gyu-Nam12,Koh Young-Hag12,Kim Hyoun-Ee3

Affiliation:

1. Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, Republic of Korea

2. School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea

3. Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea

Abstract

We herein report manufacturing of dental crowns made of 5-mol% yttria partially stabilized zirconia (5Y-PSZ) with desired mechanical properties, optical translucency and dimensional accuracy using digital light processing (DLP). To this end, all processing parameters were carefully controlled and optimized. First, 5Y-PSZ particles with a bimodal distribution were prepared via calcination of as-received granules and subsequent ball-milling and then used to formulate 5Y-PSZ suspensions with a high solid loading of 50 vol% required for high densification after sintering. Dispersant content was also optimized. To provide high dimensional accuracy, initial dimensions of dental crowns for 3D printing were precisely determined by considering increase and decrease in dimensions during photopolymerization and sintering, respectively. Photopolymerization time was also optimized for a given layer thickness of 50 μm to ensure good bonding between layers. A multi-step debinding schedule with a slow heating rate was employed to avoid formation of any defects. After sintering at 1500 °C for 2 h, 5Y-PSZ could be almost fully densified without noticeable defects within layers and at interfaces between layers. They had high relative densities (99.03 ± 0.39%) with a high cubic phase content (59.1%). These characteristics allowed for achievement of reasonably high mechanical properties (flexural strength = 625.4 ± 75.5 MPa and Weibull modulus = 7.9) and % transmittance (31.4 ± 0.7%). In addition, 5Y-PSZ dental crowns showed excellent dimensional accuracy (root mean square (RMS) for marginal discrepancy = 44.4 ± 10.8 μm and RMS for internal gap = 22.8 ± 1.6 μm) evaluated by the 3D scanning technique.

Funder

Ministry of Trade, industry & Energy

Publisher

MDPI AG

Subject

General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3