Influence of Elevated Temperature on Color Centers in LiF Crystals and Their Photoluminescence

Author:

Sankowska Małgorzata1ORCID,Bilski Pawel1ORCID,Marczewska Barbara1ORCID,Zhydachevskyy Yaroslav2ORCID

Affiliation:

1. Institute of Nuclear Physics, Polish Academy of Sciences PAN (IFJ PAN), Radzikowskiego 152, 31-342 Kraków, Poland

2. Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw, Poland

Abstract

The radiation-induced photoluminescence (PL) of LiF has found its way into many applications for the detection and imaging of ionizing radiation. In this work, the influence of thermal treatment at temperatures up to 400 °C on absorption and PL emission spectra as well as fluorescent nuclear tracks in irradiated LiF crystals was investigated. It was found that carrying out PL measurements with the crystals kept at the temperature of about 80 °C leads to a considerable increase in luminescence emission of F3+ color centers at 525 nm. This enhancement of PL intensity allows for the microscopic imaging of the fluorescent nuclear tracks using only F3+ emission, which is not possible at room temperature. It was also found that heating the irradiated crystals before measurement at temperatures from 100 °C to 200 °C increases the concentration of F3+ centers. However, the related enhancement of PL emission is insufficient in terms of enabling the observation of the fluorescent tracks in this part of the spectrum. In the case of the main PL emission at 670 nm related to F2 centers, the thermal treatment at around 290 °C substantially increases the intensity of fluorescent tracks. This effect, however, was found to occur only at low fluences of alpha particles (up to about 109 cm−2); therefore, it is barely visible in the emission spectrum and not noticeable in the absorption spectrum.

Funder

National Science Centre, Poland

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3