Preparation of AlON Powder by Carbothermal Reduction and Nitridation with Assisting by Silane Coupling Agent

Author:

Xue Zhongyuan1234,Wang Xingming1234,Liu Yuyang1234ORCID,Bai Xue1234,Gui Tao1234,Wang Xingqi1234ORCID,Li Xiaoning1234

Affiliation:

1. National Engineering Research Center of Environment-Friendly Metallurgy in Producing Premium Non-Ferrous Metals, China GRINM Group Corporation Limited, Beijing 100088, China

2. GRINM Resources and Environment Tech. Co., Ltd., Beijing 101407, China

3. General Research Institute for Non-Ferrous Metals, Beijing 100088, China

4. Beijing Engineering Research Center of Strategic Nonferrous Metals Green Manufacturing Technology, Beijing 101407, China

Abstract

In the preparation processes of aluminum oxynitride (AlON) powders by carbothermal reduction and nitridation, the homogeneity of mixed raw powders between Al2O3 and C is a critical factor by which the final composition and related properties of AlON transparent ceramic will be decided. In this paper, a silane coupling agent was used as a dispersant to optimize the distribution uniformity of raw material of Al2O3 and C, and the preparation of AlON powder with controllable composition and its distribution is investigated. The results show that the silane dispersant could effectively improve the distribution uniformity of raw material. The silane coupling agent contains functional groups of −SiH3 and −CnH2n+1O. XPS showed that the silane could react with C and Al2O3 to form the Si–C bond and C–Al2O3 bond, respectively. The silane coupling agent provides a connected bridge for raw material powders. When the amount of the silane was 5 wt%, the mixed powder had a great distribution uniformity. The addition of silane coupling agent improved the reactivity of raw materials and decreased the synthesis temperature of AlON. The single-phase AlON powder was obtained after the Al2O3/C mixed powder was kept at 1670 °C for 30 min. Furthermore, the grain size of AlON powder was 100–200 nm with an AlN content of 27.5 mol%. With the increase of holding time to 4 h, the grain size increased to 15 μm, indicating that sintering between particles occurred, which may reduce the sintering activity of the powder.

Publisher

MDPI AG

Subject

General Materials Science

Reference30 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3