Improvement of Corrosion and Wear Resistance of CoCrNiSi0.3 Medium-Entropy Alloy by Sputtering CrN Film

Author:

Chang Yi-Chun1,Lin Kaifan1,Ma Ju-Lung1,Huang Han-Fu2,Chang Shih-Hsien2ORCID,Lin Hsin-Chih1

Affiliation:

1. Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan

2. Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 10608, Taiwan

Abstract

In this study, Co, Cr, and Ni were selected as the equal-atomic medium entropy alloy (MEA) systems, and Si was added to form CoCrNiSi0.3 MEA. In order to further improve its wear and corrosion properties, CrN film was sputtered on the surface. In addition, to enhance the adhesion between the soft CoCrNiSi0.3 substrate and the super-hard CrN film, a Cr buffer layer was pre-sputtered on the CoCrNiSi0.3 substrate. The experimental results show that the CrN film exhibits a columnar grain structure, and the film growth rate is about 2.022 μm/h. With the increase of sputtering time, the increase in CrN film thickness, and the refinement of columnar grains, the wear and corrosion resistance improves. Among all CoCrNiSi0.3 MEAs without and with CrN films prepared in this study, the CoCrNiSi0.3 MEA with 3 h-sputtered CrN film has the lowest wear rate of 2.249 × 10−5 mm3·m−1·N−1, and the best corrosion resistance of Icorr 19.37 μA·cm–2 and Rp 705.85 Ω·cm2.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3