Antimicrobial Properties of TiNbSn Alloys Anodized in a Sulfuric Acid Electrolyte

Author:

Mori Yu1ORCID,Fujimori Satoko1,Kurishima Hiroaki1ORCID,Inoue Hiroyuki2,Ishii Keiko3,Kubota Maya4,Kawakami Kazuyoshi3,Mori Naoko5,Aizawa Toshimi1ORCID,Masahashi Naoya6

Affiliation:

1. Department of Orthopedic Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan

2. Department of Materials Science, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-machi, Naka-ku, Sakai 599-8531, Japan

3. Department of Medical Microbiology, Mycology, and Immunology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan

4. Graduate School of Engineering, Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan

5. Department of Radiology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan

6. Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan

Abstract

TiNbSn alloy is a high-performance titanium alloy which is biosafe, strong, and has a low Young’s modulus. TiNbSn alloy has been clinically applied as a material for orthopedic prosthesis. Anodized TiNbSn alloys with acetic and sulfuric acid electrolytes have excellent biocompatibility for osseointegration. Herein, TiNbSn alloy was anodized in a sulfuric acid electrolyte to determine the antimicrobial activity. The photocatalytic activities of the anodic oxide alloys were investigated based on their electronic band structure and crystallinity. In addition, the cytotoxicity of the anodized TiNbSn alloy was evaluated using cell lines of the osteoblast and fibroblast lineages. The antimicrobial activity of the anodic oxide alloy was assessed according to the ISO 27447 using methicillin-susceptible Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, and Escherichia coli. The anodic oxide comprised rutile and anatase titanium dioxide (TiO2) and exhibited a porous microstructure. A well-crystallized rutile TiO2 phase was observed in the anodized TiNbSn alloy. The methylene blue degradation tests under ultraviolet illumination exhibited photocatalytic activity. In antimicrobial tests, the anodized TiNbSn alloy exhibited robust antimicrobial activities under ultraviolet illumination for all bacterial species, regardless of drug resistance. Therefore, the anodized TiNbSn alloy can be used as a functional biomaterial with low Young’s modulus and excellent antimicrobial activity.

Funder

JSPS KAKENHI

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3