Mechanical Characterization and Constitutive Modeling of Nano-Stabilized Soil under Uniaxial Compression

Author:

Zhang Xingchen12,Gao Jianen1ORCID,Qiang Minmin2,Zhang Haochen2,Li Xinghua3,Long Shaobo1,Gao Zhe4,Fan Henghui4

Affiliation:

1. Institute of Soil and Water Conservation, Northwest Agriculture and Forestry University, Xianyang 712100, China

2. Northwest Engineering Corporation Limited, Power China, Xi’an 710065, China

3. College of Civil Engineering, Yan’an University, Yan’an 716000, China

4. College of Water Resources and Architectural Engineering, Northwest Agriculture and Forestry University, Xianyang 712100, China

Abstract

The stress–strain constitutive model under uniaxial compression is a basic element and important characterization method for determining physical and mechanical properties in cement-based materials research. In this study, a stress–strain constitutive model under uniaxial compression was established, which was based on a new nano-stabilized soil (NSS) through typical mechanical tests and constitutive relationship research. The results indicate that the unconfined compressive strength (UCS) of the nano-stabilized soil was enhanced with the increase in curing period and nano-stabilizer dosage, and that the strength growth rate reaches the maximum at a 12% dosage in the tested samples. The UCS of NSS under a 12% dosage is about 10~15% higher than that of ordinary stabilized soil (SS) without nano doping, and 25~40% higher compared with grade 42.5 cement-soil. The established constitutive model could accurately describe the linear-elastic and elastic-plastic deformation characteristics of NSS under uniaxial compression, which will be conducive to revealing the curve variation law of the stress–strain process. The research results could provide scientific support for the theoretical innovation and engineering application of green environmental protection materials.

Funder

National Key Research and Development Program of China

Key Research and Development Project of Shaanxi Province

National Natural Science Foundation of China

Knowledge Innovation Program of the Chinese Academy of Sciences

Platform support Project of Northwest Engineering Corporation Limited, Power China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3