Statistical Analysis of the Pouring Method’s Influence on the Distribution of Metallic Macrofibres into Vibrated Concrete

Author:

Gonzalez Laura1ORCID,Sainz-Aja Jose2ORCID,Gaute Alonso Álvaro3ORCID,Rico Jokin1,de la Fuente Antequera Albert45ORCID,Segura Ignacio45ORCID,Thomas Carlos2ORCID

Affiliation:

1. INGECID S.L. (Ingeniería de la Construcción, Investigación y Desarrollo de Proyectos), E.T.S. de Ingenieros de Caminos, Canales y Puertos, Av./Los Castros 44, 39005 Santander, Spain

2. LADICIM (Laboratory of Materials Science and Engineering), University of Cantabria. E.T.S. de Ingenieros de Caminos, Canales y Puertos, Av./Los Castros 44, 39005 Santander, Spain

3. GiaDe (Grupo de Instrumentación y Análisis Dinámico de Estructuras de Obra Civil), 39005 Santander, Spain

4. Smart Engineering, Jordi Girona 1-3 K2M 202c, 08034 Barcelona, Spain

5. Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya Barcelona Tech, Jordi Girona 1-3, C1, 08034 Barcelona, Spain

Abstract

The use of fibre-reinforced concrete (FRC) in structural applications is increasing significantly as a result of (1) the acceptance of this composite into design guidelines and (2) the improvement in terms of sustainability performance that has been reported for cases where FRC has been used. In this context, fibre orientation and distribution are factors that govern the post-cracking response of the FRC. Researchers have already dealt with the analysis of both variables from an experimental and numerical perspective, and design-oriented recommendations were included in existing design guidelines (i.e., fib Model Code 2020). Nonetheless, there are still technical aspects to be answered within a research framework before the influence of these variables on the mechanical response of FRC could be covered with sufficient reliability. In this regard, this research is aimed at shedding light on the influence of the mould geometry and concrete pouring/vibration procedures on the fibre orientation and distribution variables as well as on the post-cracking performance of the FRC. An extensive experimental programme aimed at characterising these variables using novel testing techniques (i.e., an inductive non-destructive approach for quantifying fibre amount and orientation and the BCN test for assessing the pre- and post-cracking responses of the FRC) was carried out for this purpose. A relationship has been found between the shape of the formwork and the direction of pouring, along with the direction and distribution of the fibres, both of which proved to have an influence on the residual tensile strength of the concrete. However, it has been confirmed that the first crack resistance depends on the concrete matrix, with the addition of fibres having no relevant influence on that mechanical parameter. The results and conclusions derived from this experimental programme can be extended to FRCs and boundary conditions similar to those established herein.

Funder

Ministry of Economy, Industry and Competitiveness

Industrial Doctoral Program

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3