Microstructure and Cavitation Damage Characteristics of GX40CrNiSi25-20 Cast Stainless Steel by TIG Surface Remelting

Author:

Mitelea Ion1,Bordeaşu Ilare2,Cosma (Alexa) Daniela1,Uțu Ion-Dragoș1ORCID,Crăciunescu Corneliu Marius1

Affiliation:

1. Department of Materials and Fabrication Engineering, Politehnica University Timisoara, Bulevardul Mihai Viteazul nr.1, 300222 Timisoara, Romania

2. Department of Mechanical Machines, Equipment and Transports, Politehnica University Timisoara, Bulevardul Mihai Viteazul nr.1, 300222 Timisoara, Romania

Abstract

Cavitation erosion degrades the surface of engineering components when the material is exposed to turbulent fluid flows. Under conditions of local pressure fluctuations, a nucleation of gas or vapor bubbles occurs. If the pressure suddenly drops below the vapor pressure, these bubbles collapse violently when subjected to higher pressure. This collapse is accompanied by the sudden flow of the liquid, which is manifested by stress pulses capable of causing plastic deformations on solid surfaces. Repeating these stress conditions can cause material removal and ultimately failure of the component itself. The present study aims to reduce the negative impact of this phenomenon on the mechanical systems components, using the TIG local surface remelting technique. Cavitation erosion tests were performed in accordance with the ASTM G32-2016 standard on samples taken from a cast high-alloy stainless steel. The alloy response for each melting current value was investigated by measuring mass loss as a function of cavitation attack time and by analyzing the damaged surfaces using optical and scanning electron microscopes. It was highlighted that the TIG remelted layers provide an increase in cavitation erosion resistance of 5–6 times as a consequence of the fine graining and microstructure induced by the technique applied.

Funder

EEA

Publisher

MDPI AG

Subject

General Materials Science

Reference27 articles.

1. Franc, J.-P., and Michel, J.M. (2004). Fundamentals of Cavitation, Kluwer Academic Publishers.

2. Cavitation erosion mechanism of 2Cr13 stainless steel;Guiyan;Wear,2022

3. The role of ferrite in Type 316H austenitic stainless steels on the susceptibility to creep cavitation;Warren;Mater. Sci. Eng. A,2015

4. Modeling Localized Corrosion Propagation of Metallic Materials by Peridynamics: Progresses and Challenges;Xia;Acta Metall Sin,2022

5. Low temperature plasma nitriding of a Co30Cr19Fe alloy for improving cavitation erosion resistance;Romero;Wear,2019

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3