Unified Packing Model for Improved Prediction of Porosity and Hydraulic Conductivity of Binary Mixed Soils

Author:

El-Husseiny AmmarORCID

Abstract

Binary mixed soils, containing coarse sand particles mixed with variable content of fines (fine sand, silt, or clay) are important for several environmental and engineering applications. The packing state (or porosity) of such sand-fines mixtures controls several important physical properties such as hydraulic conductivity. Therefore, developing an analytical packing model to predict porosity of binary mixed soils, based on properties of pure unmixed sand and fines (endmembers), can contribute to predicting hydraulic conductivity for the mixtures without the need for extensive laboratory measurements. Toward this goal, this study presents a unified packing model for the purpose of predicting the porosity and hydraulic conductivity of binary mixed soils as function of fines fraction. The current model modifies an existing packing model developed for coarse binary mixed soils to achieve three main improvements: (1) being inclusive of wide range of binary mixed soils covering the whole range particle sizes, (2) incorporating the impact of cohesive packing behavior of the fines on binary mixture porosity, and (3) accounting for the impact of clay swelling. The presented model is the first of its kind incorporating the combined impact of all three factors: particle size ratio, fines cohesive packing and swelling, on binary mixtures porosity. The predictions of the modified model are validated using experimental published data for the porosity of sand-fines mixtures from 24 different studies. The model shows significant improvement in predicting porosity compared to existing packing models that frequently underestimate the porosity. By using the predicted porosity as an input in Kozeny–Carman formulation, the absolute mean error in predicting hydraulic conductivity, as function of fines fraction for 16 different binary mixed soils, is reduced by 50% when compared to the use of the previous packing model. The current model provides insights about the endmembers properties (porosity, hydraulic conductivity, and grain size) and fines content required to achieve a certain target desirable porosity and hydraulic conductivity of the mixed soils. This can assist the optimization of soil mixing design for various applications.

Funder

King Fahd University of Petroleum and Minerals

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference78 articles.

1. Comparison of Saturated Hydraulic Conductivity Estimated by Three Different Methods

2. Fractional packing model for hydraulic conductivity derived from sediment mixtures

3. Porosity-permeability relationship in dual-porosity carbonate analogs

4. Shear Strength and Stiffness of Silty Sand

5. Evaluation of Relative Density Measurements and Applications: Evaluation of Relative Density and Its Role in Geotechnical Projects Involving Cohesionless Soils;Selig,1973

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A microstructural investigation on hydraulic conductivity of calcareous clay;Applied Ocean Research;2024-09

2. Soil pore structure and its research methods: A review;Soil and Water Research;2024-02-15

3. Modeling consolidated sandstones with dispersed clay;Third International Meeting for Applied Geoscience & Energy Expanded Abstracts;2023-12-14

4. On the use of packing models for the prediction of fluvial sediment porosity;Earth Surface Dynamics;2023-11-02

5. Microhardness and microstructural properties of a mixture of hydroxyapatite and β-tricalcium phosphate;Journal of Asian Ceramic Societies;2022-10-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3