Application of Machine Learning Coupled with Stochastic Numerical Analyses for Sizing Hybrid Surge Vessels on Low-Head Pumping Mains

Author:

Sattar Ahmed M. A.12ORCID,Ghazal Abedalkareem Nedal1,Elhakeem Mohamed3,Elansary Amgad S.1ORCID,Gharabaghi Bahram4ORCID

Affiliation:

1. Department of Irrigation and Hydraulics, Cairo University, Giza 12613, Egypt

2. Department of Civil Engineering, German University in Cairo, Cairo 11835, Egypt

3. Civil Engineering Department, Abu Dhabi University, Abu Dhabi P.O. Box 59911, United Arab Emirates

4. School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada

Abstract

In surge protection, low-head profiles are deemed a challenge in pump failure events since they are prone to severe negative pressure surges that require an uneconomical surge vessel volume. A hybrid surge vessel with a dipping tube can provide required protection with reasonable economic volume. This work presents novel analyses for the hybrid surge vessel and develops a simple model for its optimum sizing using a stochastic numerical approach coupled with machine learning. Practical ranges for correct sizing of vessel components, such as ventilation tube, inlet/outlet air valves, and compression chamber, are presented for optimal protection and performance. The water hammer equations are iteratively solved using the hybrid surge vessel’s revised boundary conditions within the method of characteristics numerical framework to generate 2000 cases representing real pump failures on low-head pipelines. Genetic programming is utilized to develop simple relations for prediction of the hybrid vessel initial and expanded air volumes in addition to the compression chamber volume. Moreover, the developed model presented a classification index for low-head pipelines on which the hybrid vessel would be most economical. The developed model yielded good prediction error statistics. The developed model proves to be more accurate and easier to use than the classical design charts for the low-head pumping mains. The model clearly showed the relation between various hydraulic and pipe parameters, with pipe diameter and static head as the most influencing parameters on compression chamber volume and expanded air volume. The developed model, together with the classification indices, can be used for preliminary surge protection sizing for low-head pipelines.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3