Automatic SWMM Parameter Calibration Method Based on the Differential Evolution and Bayesian Optimization Algorithm

Author:

Gao Jiawei1,Liang Ji1,Lu Yu1,Zhou Ruilong1,Lu Xin2

Affiliation:

1. School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

2. Sichuan Hydraulic Research Institute, Chengdu 610072, China

Abstract

In response to the low accuracy exhibited by the Storm Water Management Model (SWMM), we propose an enhanced Differential Evolution and Bayesian Optimization Algorithm (DE-BOA). This algorithm integrates the global search capability of the differential evolution algorithm with the local search capability of the Bayesian optimization algorithm, which enables a more comprehensive exploration of the vector solution space. A comparative analysis of various types of rainfall events is conducted. For model calibration and validation, a drainage subzone in Jinshazhou, Guangzhou City, is selected as the research subject. In total, 20 specific rainfall events are selected, and the DE-BOA algorithm outperforms the manual calibration, the differential evolution algorithm, and the Bayesian optimization algorithm regarding model calibration accuracy. Furthermore, the DE-BOA algorithm exhibits robust adaptability to rainfall events characterized by multiple peaks and higher precipitation levels, with the Nash–Sutcliffe efficiency coefficient values surpassing 0.90. This study’s findings could hold significant reference value for dynamically updating model parameters, thereby enhancing the model simulation performance and improving the accuracy of the urban intelligent water management platform.

Funder

National Key R&D Program of China

Natural Science Foundation of Hubei Province of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3