Influence of the Reward Function on the Selection of Reinforcement Learning Agents for Hybrid Electric Vehicles Real-Time Control

Author:

Acquarone Matteo1,Maino Claudio1ORCID,Misul Daniela1ORCID,Spessa Ezio1ORCID,Mastropietro Antonio2ORCID,Sorrentino Luca3,Busto Enrico3

Affiliation:

1. Interdepartmental Center for Automotive Research and Sustainable Mobility (CARS@PoliTO), Department of Energetics, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy

2. Department of Data Science, EURECOM, Route des Chappes 450, 06904 Biot, France

3. Addfor Industriale s.r.l., Piazza Solferino 7, 10121 Turin, Italy

Abstract

The real-time control optimization of electrified vehicles is one of the most demanding tasks to be faced in the innovation progress of low-emissions mobility. Intelligent energy management systems represent interesting solutions to solve complex control problems, such as the maximization of the fuel economy of hybrid electric vehicles. In the recent years, reinforcement-learning-based controllers have been shown to outperform well-established real-time strategies for specific applications. Nevertheless, the effects produced by variation in the reward function have not been thoroughly analyzed and the potential of the adoption of a given RL agent under different testing conditions is still to be assessed. In the present paper, the performance of different agents, i.e., Q-learning, deep Q-Network and double deep Q-Network, are investigated considering a full hybrid electric vehicle throughout multiple driving missions and introducing two distinct reward functions. The first function aims at guaranteeing a charge-sustaining policy whilst reducing the fuel consumption (FC) as much as possible; the second function in turn aims at minimizing the fuel consumption whilst ensuring an acceptable battery state of charge (SOC) by the end of the mission. The novelty brought by the results of this paper lies in the demonstration of a non-trivial incapability of DQN and DDQN to outperform traditional Q-learning when a SOC-oriented reward is considered. On the contrary, optimal fuel consumption reductions are attained by DQN and DDQN when more complex FC-oriented minimization is deployed. Such an important outcome is particularly evident when the RL agents are trained on regulatory driving cycles and tested on unknown real-world driving missions.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3