Mixed-Mode Ventilation Based on Adjustable Air Velocity for Energy Benefits in Residential Buildings

Author:

Su Lichen1ORCID,Ouyang Jinlong1ORCID,Yang Li2ORCID

Affiliation:

1. The College of Architecture and Environment, Sichuan University, Chengdu 610207, China

2. The College of Architecture and Urban Planning, Tongji University, Shanghai 200092, China

Abstract

Energy efficiency and air quality in residential buildings have aroused intensive interest. Generally speaking, the heating, ventilation and air conditioning (HVAC) system is widely used to regulate indoor environmental spaces. Meanwhile, mixed-mode ventilation has been proven to reduce energy consumption and introduce fresh air effectively. This study aims to discuss the correlations between air velocity, temperature and indoor thermal comfort and establish corresponding statistical models based on the ASHRAE_db II database and the Predicted Mean Vote (PMV). On this basis, the air-velocity adjustment strategy, including determining adjustability and establishing adjustable intervals, is optimized based on support vector machine and envelope curve methods. The results show that the recognition accuracy of the adjustability determination model is over 98%, and the air-velocity adjustable interval in the envelope is increased, facilitating control of mixed-mode ventilation. The case shows that interval adjustment increases the sample points by 18.6% (18.1% above 20 °C and 4.5% above 28 °C). Therefore, further research can be supported on improving thermal comfort by air-velocity adjustment to take advantage of the mixed-mode ventilation mode, which is beneficial to building energy efficiency.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3