Numerical Analysis of Heat Transfer within a Rotary Multi-Vane Expander

Author:

Błasiak Przemysław1ORCID,Kolasiński Piotr1ORCID,Daniarta Sindu12ORCID

Affiliation:

1. Department of Thermodynamics and Renewable Energy Sources, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland

2. Department of Energy Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary

Abstract

In this paper, the results of numerical investigations on heat transfer in a multi-vane expander (MVE) are reported. MVEs are very interesting for various technological applications because of their advantages (such as, for example, low gas flow capacity and a low expansion ratio). According to a literature study, the heat exchange mechanisms occurring in these machines have not yet undergone in-depth analysis. As a result, there have been very few experimental or modeling results connected to these unquestionably significant processes from both a scientific and practical perspective. Despite the fact that several analytical models have been developed for these phenomena, there is no numerical model dedicated to an MVE. This model was developed by the authors and presented in this paper together with modeling results. Numerical simulations were executed in the ANSYS CFX and focused on defining the expander heat transfer coefficients under various flow circumstances. The results showed inside heat transfer processes in MVEs and, moreover, it was discovered that, in the gap between the vane and the cylinder, there are changes in the fluid’s velocity profile.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3