Forecasting Energy Recovery from Municipal Waste in a Closed-Loop Economy

Author:

Marciniuk-Kluska Anna1ORCID,Kluska Mariusz2

Affiliation:

1. Faculty of Social Sciences, Siedlce University of Natural Sciences and Humanities, 39 Zytnia Str., 08-110 Siedlce, Poland

2. Faculty of Sciences, Siedlce University of Natural Sciences and Humanities, 54 3-Maja Str., 08-110 Siedlce, Poland

Abstract

Tackling climate change, implementing the principles of sustainable development and a closed-loop economy, and creating an economically and environmentally efficient waste management system are the most serious environmental and economic challenges today. One of the biggest problems with waste is that it causes water, soil, and air pollution. The combination of precipitation and septic processes produces leachates containing heavy metals and acids, which negatively affect surface and groundwater, changing their composition and pH, among other things. According to the Polish waste database, there are more than 2500 waste incineration plants operating worldwide, including more than 500 in Europe, while there are 8 in Poland. The concept of a closed-loop economy is based on the rational use of resources, i.e., less consumption of raw materials and energy by creating a closed loop of processes in which waste becomes raw materials in subsequent production stages. The aim of this study was to develop forecasts of electricity recovery from municipal waste using a prediction method based on an approximating function. The predictions made show that in 2023, the forecast of energy recovery from biodegradable municipal waste will be 6566 TJ. Projections of energy recovery from municipal waste for the future are steadily increasing, with planned recovery in 2030 at 9943 TJ.

Funder

Ministry of Education and Science

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3