Application of an Artificial Neural Network for Detecting, Classifying, and Making Decisions about Asymmetric Short Circuits in a Synchronous Generator

Author:

Baghdasaryan Marinka1ORCID,Ulikyan Azatuhi2,Arakelyan Arusyak1

Affiliation:

1. Institute of Energetics and Electrical Engineering, National Polytechnic University of Armenia, Teryan St.105, Yerevan 0009, Armenia

2. Institute of Information and Telecommunication Technologies and Electronics, National Polytechnic University of Armenia, Teryan St.105, Yerevan 0009, Armenia

Abstract

Fast and accurate detection of emerging faults in synchronous generators, which have found wide application in power and transport systems, contributes to ensuring reliable operation of the entire system. This article presents a new approach to making accurate decisions on the continuation of the operation of damaged generators in accordance with the requirements of IEEE standards. The necessity of limiting the duration of operation of the generator in conditions of asymmetric short circuits in the stator windings is substantiated. The authors of the article, based on an artificial neural network in the Matlab software environment, have developed a model for detecting, classifying, and making quick and accurate decisions about the operation of the generator in the event of asymmetric short circuits in the stator windings of the generator. This makes it possible to simulate the operation of the generator at various parameters. Prior to training the neural network, the database formed by phase current and voltage signals was analyzed by various features. The neural network was trained using the back-error-propagation algorithm. The output 10 neurons of the network showed the state of the phase windings of the stator. The recorded information of the output neurons was evaluated, in terms of meeting the requirements of the IEEE standard, and decisions were made about continuing or interrupting the generator operation. Tests of the effectiveness of the model showed that it could achieve the desired result at step 49, and the calculated accuracy was 99.5833%. The results obtained can be successfully used in the development of high-speed and highly reliable diagnostic systems and control and decision-making systems for generators for various purposes.

Funder

Science Committee of RA

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3