Aggregation of Incidence and Intensity Risk Variables to Achieve Reconciliation

Author:

Hunt Clive,Taplin RossORCID

Abstract

The aggregation of individual risks into total risk using a weighting variable multiplied by two ratio variables representing incidence and intensity is an important task for risk professionals. For example, expected loss (EL) of a loan is the product of exposure at default (EAD), probability of default (PD), and loss given default (LGD) of the loan. Simple weighted (by EAD) means of PD and LGD are intuitive summaries however they do not satisfy a reconciliation property whereby their product with the total EAD equals the sum of the individual expected losses. This makes their interpretation problematic, especially when trying to ascertain whether changes in EAD, PD, or LGD are responsible for a change in EL. We propose means for PD and LGD that have the property of reconciling at the aggregate level. Properties of the new means are explored, including how changes in EL can be attributed to changes in EAD, PD, and LGD. Other applications such as insurance where the incidence ratio is utilization rate (UR) and the intensity ratio is an average benefit (AB) are discussed and the generalization to products of more than two ratio variables provided.

Publisher

MDPI AG

Subject

Strategy and Management,Economics, Econometrics and Finance (miscellaneous),Accounting

Reference15 articles.

1. Basel II: International Convergence of Capital Measurement and Capital Standards, A Revised Framework—Comprehensive Version,2006

2. Quantitative Weights and Aggregation

3. Sul concetto di media;Chisini;Periodico di Mathematiche,1929

4. Mean, What do You Mean?

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3