Monthly Streamflow Prediction of the Source Region of the Yellow River Based on Long Short-Term Memory Considering Different Lagged Months

Author:

Chu Haibo1,Wang Zhuoqi1,Nie Chong2

Affiliation:

1. College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China

2. Chinese Research Academy of Environmental Sciences, Beijing 100012, China

Abstract

Accurate and reliable monthly streamflow prediction plays a crucial role in the scientific allocation and efficient utilization of water resources. In this paper, we proposed a prediction framework that integrates the input variable selection method and Long Short-Term Memory (LSTM). The input selection methods, including autocorrelation function (ACF), partial autocorrelation function (PACF), and time lag cross-correlation (TLCC), were used to analyze the lagged time between variables. Then, the performance of the LSTM model was compared with three other traditional methods. The framework was used to predict monthly streamflow at the Jimai, Maqu, and Tangnaihai stations in the source area of the Yellow River. The results indicated that grid search and cross-validation can improve the efficiency of determining model parameters. The models incorporating ACF, PACF, and TLCC with lagged time are evidently superior to the models using the current variable as the model inputs. Furthermore, the LSTM model, which considers the lagged time, demonstrated better performance in predicting monthly streamflow. The coefficient of determination (R2) improved by an average of 17.46%, 33.94%, and 15.29% for each station, respectively. The integrated framework shows promise in enhancing the accuracy of monthly streamflow prediction, thereby aiding in strategic decision-making for water resources management.

Funder

Major Science and Technology Projects of Qinghai Province

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3