Polymeric Films Containing Tenoxicam as Prospective Transdermal Drug Delivery Systems: Design and Characterization

Author:

Ciurba Adriana,Antonoaea Paula,Todoran NicoletaORCID,Rédai Emőke,Vlad Robert Alexandru,Tătaru Anamaria,Muntean Daniela-Lucia,Bîrsan Magdalena

Abstract

The administration of drugs via transdermal therapeutic systems has become an attractive form of therapeutic approach, considering its advantages and the high patient compliance achieved, making them a viable alternative, especially in the treatment of chronic diseases. The purpose of our study was the development of polymer-based films containing tenoxicam (TX) and the analysis of dissolution kinetics. Auxiliary substances represent an important part of pharmaceutical forms, so during the first stage, TX and excipient compatibility were verified. Fourier Transform Infrared Spectroscopy (FT-IR) and Differential Scanning Calorimetry (DSC) analyses were performed on TX and on physical mixtures of TX-HPMCE5 and TX-HPMC15kcP. Three polymeric films of TX (TX1, TX2, and TX3) were prepared using a solvent evaporation technique. Release studies were done at 32 °C ± 1 °C with a Franz diffusion cell. The results of the DSC and FT-IR analyses demonstrated the compatibility of the active substance with the two matrix-forming polymers. The results obtained in the release studies of TX from the proposed polymeric films suggested a pH-dependent behavior in all three polymeric films. At pH 5.5, flux values were between 8.058 ± 0.125 μg·cm−2·h−1 and 10.850 ± 0.380 μg·cm−2·h−1; and at pH 7.4, between 10.990 ± 0.2.490 μg·cm−2·h−1 and 53.140 ± 0.196 μg·cm−2·h−1. The Korsmeyer–Peppas model described a non-Fickian transport mechanism. The n values varied between 0.63–0.7 at pH 5.5 and 0.73–0.86 at pH 7.4, which suggested a diffusion depending on the matrix hydration and polymer relaxation.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3