Detection of Viruses in Special Stands of Common Ash Reveals Insights into the Virome of Fraxinus excelsior

Author:

Rehanek Marius1ORCID,Al Kubrusli Rim1,Köpke Kira1,von Bargen Susanne1ORCID,Büttner Carmen1ORCID

Affiliation:

1. Division Phytomedicine, Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Lentzeallee 55/57, D-14195 Berlin, Germany

Abstract

Plant diseases are mostly multicausal with several factors influencing the health status of affected hosts. Common ash (Fraxinus excelsior), a significant tree species of European forests, is currently mostly endangered by ash dieback, caused by the invasive fungus Hymenoscyphus fraxineus. However, contributing factors, including pathogenic viruses, are poorly understood. Here, we report the results of a virus screening conducted on selected special stands of F. excelsior. Over three consecutive years, ash trees from different origins were tested, including leaf material from mature seed trees, young trees and ash seedlings from the natural regeneration. Using RT-PCR, we screened for five viruses, including the generalist species ArMV (Nepovirus arabis) and CLRV (Nepovirus avii), as well as newly discovered viruses in ash, including the emaravirus ASaV (Emaravirus fraxini), the idaeovirus PrLBaV (Idaeovirus ligustri), and cytorhabdoviruses. The results revealed a high virus diversity in common ash. An association of ASaV detection with specific leaf symptoms, including shoestring, chlorotic ringspots, and vein yellowing, was documented. An analyses of relevant gene products of cytorhabdoviruses obtained from ashes of different sites revealed sequence diversities and two distinct phylogenetic groups present in ash populations. Signatures of novel viruses from different families have been identified by high-throughput sequencing. Together, our results provide insights into the virus diversity and distribution of viruses in ash and expand our knowledge about the virome of this endangered tree species.

Funder

German Federal Ministry of Food and Agriculture (BMEL) and Federal Ministry of Environment, Nature Conservation, Nuclear Safety and Consumer Protection

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3