Advanced Solid Geopolymer Formulations for Refractory Applications

Author:

Hussain Shaik1ORCID,Amritphale Sudhir1,Matthews John1,Paul Niloy1,Matthews Elizabeth2,Edwards Richard1

Affiliation:

1. Trenchless Technology Center, Louisiana Tech University, Ruston, LA 71272, USA

2. Civil Engineering & Construction Engineering Technology, Louisiana Tech University, Ruston, LA 71272, USA

Abstract

Cement, as a construction material, has low thermal resistance, inherent fire resistance, and is incombustible up to a certain degree. However, the loss of its mechanical performance and spalling are its primary issues, and it thus cannot retain its performance in refractory applications. The present study explores the performance of geopolymer formulations that have excellent fire resistance properties for potential refractory applications. This study is unique, as it investigates advanced solid geopolymer formulations that need only water to activate and bind. Various solid geopolymer formulations with fly ash as a precursor; potassium hydroxide and potassium silicate as activators; and mullite and alumina as refractory aggregates were studied for their compressive strength at up to 1100 °C and compared with their two-part conventional liquid alkaline geopolymer counterparts. Advanced solid geopolymer formulations with mullite and alumina as refractory aggregates had mechanical strength values of 84 MPa and 64 MPa post-1100 °C exposure and were further exposed to ten thermal cycles of 1100 °C to study their fatigue resistance and post-exposure compressive strengths. The geopolymer sample with mullite as a refractory aggregate yielded 115.2 MPa compressive strength after the fourth cycle of exposure. This sample was also studied for its temperature distribution upon direct flame exposure. All the geopolymer formulations displayed a drop in compressive strength at 600 °C due to viscous sintering and then a rise in strength at 1100 °C due to phase transformation. X-ray diffraction studies revealed that the formation of crystalline phases such as leucite, sanidine, and annite were responsible for the superior strengths at 1100 °C for the alumina- and mullite-based geopolymer formulations.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3