Affiliation:
1. Department of Structural Steels, Central Iron and Steel Research Institute, Beijing 100081, China
Abstract
In this work, two types of 590 MPa grade steels, composed of NiCrMo steel and Cu-bearing steel, were processed using traditional offline quenching and tempering and direct quenching (DQ) and tempering. The influence of DQ on microstructural evolution and strengthening mechanisms of these two types of steel was investigated. Grain refinement and dislocation density increase were determined by controlled rolling and following the DQ process in both two types of steel. In Cu-bearing steels, the refined grains and high-density dislocation further promoted the precipitation behavior of Cu-rich particles and alloyed carbides during the tempering treatment. Compared with traditionally quenched and tempered steels, NiCrMo steels after the direct quenching and tempering (DQT) process achieved 106 MPa higher yield strength through grain refinement strengthening and dislocation strengthening, while the Cu-bearing steels after the DQT process achieved 159 MPa higher yield strength through grain refinement strengthening, dislocation strengthening, and precipitation strengthening. The contribution degree of different strengthening mechanisms was quantitatively analyzed. Grain refinement also compensated for the toughness loss caused by the increase in dislocation, leading to an impact energy of 237 J and 248 J at −84 °C for NiCrMo and Cu-bearing steels after DQT, respectively.