A Note for Probabilistic Model of Polymer Crystallization in Temperature Gradients

Author:

Ruan Chunlei,Lv Yunlong

Abstract

A polymer crystallization kinetics model is the most important way to characterize the crystallization rate of polymers. Because polymers are poor heat conductors, the cooling of thick-walled shapes results in temperature gradients. Piorkowska (Piorkowska, E. J. Appl. Polym. Sci., 2002, 86: 1351–1362.) derived the probabilistic analytical model of polymer crystallization in temperature gradients based on the Avrami equation. However, there are some misunderstandings when using this model. Here, isotactic polypropylene (iPP) is chosen as a model polymer and its crystallization is studied in a temperature gradient field. Based on the results of the Monte Carlo method, the probabilistic model methodology is discussed. The results show that when the product has a large temperature gradient and a large temperature difference, the probabilistic model cannot be used directly; instead, it is necessary to use the average probabilistic model. This means that the sample should be divided into several smaller parts and the probabilistic model used separately for each small part. The values are then averaged to obtain the mean conversion degree of the melt into spherulites for the whole product. The effects of the division number are also discussed. The goal of the present paper is to better understand the polymer crystallization kinetics model in terms of temperature gradients.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3