Characterization of Coals and Coal Ashes with High Si Content Using Combined Second-Derivative Infrared Spectroscopy and Raman Spectroscopy

Author:

Yin ,Yin ,Wu ,Qi ,Tian ,Zhang ,Hu ,Feng

Abstract

The organic and mineral components in two coals and resulting high-temperature ashes with high silicon content were characterized by second-derivative infrared spectroscopy, Raman spectroscopy, and X-ray diffraction (XRD). The infrared spectra of raw coals show weak organic functional groups bands but strong kaolinite bands because of the relatively high silicates content. In contrast, the Raman spectra of raw coals show strong disordered carbon bands but no mineral bands since Raman spectroscopy is highly sensitive to carbonaceous phases. The overlapping bands of mineral components (e.g., calcite, feldspar, and muscovite) were successfully resolved by the method of second-derivative infrared spectroscopy. The results of infrared spectra indicate the presence of metakaolinite in coal ashes, suggesting the thermal transformation of kaolinite during ashing. Intense quartz bands were shown in both infrared and Raman spectra of coal ashes. In addition, Raman spectra of coal ashes show a very strong characteristic band of anatase (149 cm–1), although the titanium oxides content is very low. Combined use of second-derivative infrared spectroscopy and Raman spectroscopy provides valuable insight into the analyses of mineralogical composition. The XRD results generally agree with those of FTIR and Raman spectroscopic analyses.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3