Abstract
The next generation 6G wireless systems are envisioned to have higher reliability and capacity than the existing cellular systems. The reconfigurable intelligent surfaces (RISs)-assisted wireless networks are one of the promising solutions to control the wireless channel by altering the electromagnetic properties of the signal. The dual connectivity (DC) increases the per-user throughput by utilizing radio resources from two different base stations. In this work, we propose the RIS-assisted DC system to improve the per-user throughput of the users by utilizing resources from two base stations (BSs) in proximity via different RISs. Given an α-fair utility function, the joint resource allocation and the user scheduling of a RIS-assisted DC system is formulated as an optimization problem and the optimal user scheduling time fraction is derived. A heuristic is proposed to solve the formulated optimization problem with the derived optimal user scheduling time fractions. Exhaustive simulation results for coverage and throughput of the RIS-assisted DC system are presented with varying user, BS, blockage, and RIS densities for different fairness values. Further, we show that the proposed RIS-assisted DC system provides significant throughput gain of 52% and 48% in certain scenarios when compared to the existing benchmark and DC systems.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献