Artificial Intelligence Applications and Self-Learning 6G Networks for Smart Cities Digital Ecosystems: Taxonomy, Challenges, and Future Directions

Author:

Ismail LeilaORCID,Buyya Rajkumar

Abstract

The recent upsurge of smart cities’ applications and their building blocks in terms of the Internet of Things (IoT), Artificial Intelligence (AI), federated and distributed learning, big data analytics, blockchain, and edge-cloud computing has urged the design of the upcoming 6G network generation, due to their stringent requirements in terms of the quality of services (QoS), availability, and dependability to satisfy a Service-Level-Agreement (SLA) for the end users. Industries and academia have started to design 6G networks and propose the use of AI in its protocols and operations. Published papers on the topic discuss either the requirements of applications via a top-down approach or the network requirements in terms of agility, performance, and energy saving using a down-top perspective. In contrast, this paper adopts a holistic outlook, considering the applications, the middleware, the underlying technologies, and the 6G network systems towards an intelligent and integrated computing, communication, coordination, and decision-making ecosystem. In particular, we discuss the temporal evolution of the wireless network generations’ development to capture the applications, middleware, and technological requirements that led to the development of the network generation systems from 1G to AI-enabled 6G and its employed self-learning models. We provide a taxonomy of the technology-enabled smart city applications’ systems and present insights into those systems for the realization of a trustworthy and efficient smart city ecosystem. We propose future research directions in 6G networks for smart city applications.

Funder

National Water and Energy Center of the United Arab Emirates University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3