Sequential Extraction Resulted in Similar Fractionation of Ionic Zn, Nano- and Microparticles of ZnO in Acidic and Alkaline Soil

Author:

Šebesta MartinORCID,Urík Martin,Kolenčík Marek,Bujdoš Marek,Matúš PeterORCID

Abstract

The evaluation of nanoparticle bioavailability or the bioavailability of dissolved elements by direct measurement through plant uptake is a strenuous process. Several multi-step sequential extraction procedures, including the BCR sequential extraction procedure, have been created to provide potential accessibility of elements, where real soil-plant transfer can be problematic to implement. However, these have limitations of their own based on the used extractants. For the purposes of our research, we enriched two soils: an untilted forest soil with naturally acidic pH and a tilted agricultural soil with alkaline pH by three Zn forms—ionic Zn in the form of ZnSO4, ZnO nanoparticles (ZnO NP) and larger particles of ZnO (ZnO B)—by batch sorption. We then extracted the retained Zn in the soils by BCR sequential extraction procedure to extract three fractions: ion exchangeable, reducible, and oxidizable. The results were compared among the soils and a comparison between the different forms was made. Regardless of the difference in soil pH and other soil properties, ZnO NP, ZnO B, and ionic Zn showed little to no difference in the relative distribution between the observed soil fractions in both forest soil and agricultural soil. Since ionic Zn is more available for plant uptake, BCR sequential extraction procedure may overestimate the easily available Zn when amendment with ionic Zn is compared to particulate Zn. The absence of a first extraction step with mild extractant, such as deionized water, oversimplifies the processes the particulate Zn undergoes in soils.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3