Tree-Ring Stable Oxygen Isotope Ratio (δ18O) Records Precipitation Changes over the past Century in the Central Part of Eastern China

Author:

Sun Changfeng12ORCID,Wu Xuan1,Li Qiang12ORCID,Liu Yu23,Ren Meng24,Cai Qiufang23ORCID,Song Huiming12,Ma Yongyong5

Affiliation:

1. Institute of Global Environmental Change, Xi’an Jiaotong University, Xi’an 710049, China

2. State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061, China

3. CAS Center for Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences, Xi’an 710061, China

4. Xi’an Institute for Innovative Earth Environment Research, Xi’an 710061, China

5. Meteorological Institute of Shaanxi Province, Xi’an 710015, China

Abstract

Fully understanding the past characteristics of climate and patterns of climate change can contribute to future climate prediction. Tree-ring stable oxygen isotope ratio (δ18O) is crucial for high-resolution research of past climate changes and their driving mechanisms. A tree-ring δ18O chronology from 1896 to 2019 was established using Pinus tabulaeformis Carr. from the Yimeng Mountains (YMMs) in the central part of eastern China. We found that precipitation from the 41st pentad (five days) of the previous year to the 40th pentad of the current year (P41–40) was the main factor influencing the YMMs tree-ring δ18O change. We then created a transfer function between P41–40 and tree-ring δ18O. The reconstructed P41–40 explained 39% of the variance in the observed precipitation during the common period of 1960–2016. Over the past 124 years, the YMMs experienced 19 dry years and 20 wet years. The spatial correlation results indicate that the reconstructed precipitation could, to some extent, represent the precipitation changes in Shandong Province, and even the central part of eastern China, from the early 20th century to the present. In addition, it was found that the trends in YMMs tree-ring δ18O were similar at both high frequency and low frequency to those in tree-ring δ18O series from Mt. Tianmu in eastern China and from Jirisan National Park in southern South Korea. However, the YMMs tree-ring δ18O was only correlated at low frequency with the tree-ring δ18O of the Ordos Plateau in northwestern China and that of Nagano and Shiga in central Japan, which are far from the YMMs. The changes in precipitation and tree-ring δ18O in the YMMs were, to some extent, influenced by the Pacific decadal oscillation.

Funder

National Natural Science Foundation of China

Chinese Academy of Sciences

CAS ‘Light of West China’ Program

State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, CAS

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3