Inconsistent Data Cleaning Based on the Maximum Dependency Set and Attribute Correlation

Author:

Li Pei,Dai Chaofan,Wang Wenqian

Abstract

In banks, governments, and Internet companies, inconsistent data problems may often arise when various information systems are collecting, processing, and updating data due to human or equipment reasons. The emergence of inconsistent data makes it impossible to obtain correct information from the data and reduces its availability. Such problems may be fatal in data-intensive enterprises, which causes huge economic losses. Moreover, it is very difficult to clean inconsistent data in databases, especially for data containing conditional functional dependencies with built-in predicates (CFDPs), because it tends to contain more candidate repair values. For the inconsistent data containing CFDPs to detect incomplete and repair difficult problems in databases, we propose a dependency lifting algorithm (DLA) based on the maximum dependency set (MDS) and a reparation algorithm (C-Repair) based on integrating the minimum cost and attribute correlation, respectively. In detection, we find recessive dependencies from the original dependency set to obtain the MDS and improve the original algorithm by dynamic domain adjustment, which extends the applicability to continuous attributes and improves the detection accuracy. In reparation, we first set up a priority queue (PQ) for elements to be repaired based on the minimum cost idea to select a candidate element; then, we treat the corresponding conflict-free instance ( I n v ) as the training set to learn the correlation among attributes and compute the weighted distance (WDis) between the tuple of the candidate element and other tuples in I n v according to the correlation; and, lastly, we perform reparation based on the WDis and re-compute the PQ after each reparation round to improve the efficiency, and use a label, flag, to mark the repaired elements to ensure the convergence at the same time. By setting up a contrast experiment, we compare the DLA with the CFDPs based algorithm, and the C-Repair with a cost-based, interpolation-based algorithm on a simulated instance and a real instance. From the experimental results, the DLA and C-Repair algorithms have better detection and repair ability at a higher time cost.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3