Localization Free Energy Efficient and Cooperative Routing Protocols for Underwater Wireless Sensor Networks

Author:

Shah Sahar,Khan Anwar,Ali IhsanORCID,Ko Kwang-Man,Mahmood Hasan

Abstract

Mitigation of channel unfavorable circumstances during data routing in underwater wireless sensor networks (UWSNs) has utmost significance. It guarantees saving packet corruption along unfavorable channels so that vital data is not lost or become meaningless. This paper proposes two routing protocols for UWSNs: localization free energy efficient routing (LFEER) and its improved version, localization free energy efficient cooperative routing (Co-LFEER). The LFEER makes decision of choosing a relay based on its maximum residual energy, number of hops and the bit error rate of the link over which packets are transmitted. These metrics are chosen to save packets from corruption to the maximum limit and maintain stable paths (where nodes do not die soon). Since a single link is used in the LFEER for packets forwarding, the link may become worse with changing circumstances of the channel. To deal with this issue, cooperative routing is added to the LFFER to construct the Co-LFEER protocol, in which some copies of packets are received by destination to decide about packets quality. Converse to some prevalent protocols, both LFEER and Co-LFEER are independent of knowing the sensor nodes’ positions, which increases computational complexity and wasteful utilization of resources. Based on extensive simulations, the proposed schemes are better than Co-DBR in reducing energy utilization and advancing packets to the desired destination.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3